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FREE VIBRATION OF A ROTATING
BEAM-CONNECTED SPACE STATION™

SUMMARY

The free vibration of a rotating beam-connected space station is
analyzed with a mathematical model of the space station which represents the
general three-dimensional motion of the various components of the system.
The space station is composed of two space modules connected by a flexible
beam, and the system is caused to spin in the plane of its orbit in order to
produce an artificial gravity environment within the space modules.

The kinetic energy and potential energy of the space station are used to
develop a Lagrangian function of the system. Hamilton's principle is used to
determine a set of governing equations, and a set of boundary conditions repre-
senting a clamped-clamped attachment of the beam to each space module is
applied to the ends of the beam. Within the limits of small deflection theory,
the motion of the space station is shown to be uncoupled into two separate
types of motion, one in the plane of rotation and the other perpendicular to
the plane of rotation.

An exact solution is obtained for the beam deflection in the plane of
rotation. The application of the nonhomogeneous boundary conditions leads
to a set of simultaneous equations in the frequency pz, from which a charac-
teristic determinant is developed. A procedure to solve for the zeros of the
characteristic determinant is programmed for digital solution on the IBM 7094.

Results of the analysis for a given space station design are presented
in the form of tables showing the natural frequencies of free vibration of the
space station for various spin rates. The effect of the spin rate is shown to
be an "apparent' increase in the stiffness of the beam. Mode shapes showing
the normalized bending deflection of the beam in its six lowest modes of
vibration are presented, By analysis of five special cases of negative values
of pz, the existence of two rigid body modes with nonzero values of p? is
demonstrated; and it is shown that the configuration studied has no instabilities
for motion in the plane of the orbit.

* The information presented herein was included in a dissertation
entitled, "Free Vibration of a Rotating Beam-Connected Space Station' sub-
mitted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Engineering Mechanics, Virginia Polytechnic Institute, Blacksburg,
Virginia, June 1968,




SECTION I. INTRODUCTION

The problem of determining the natural frequencies of the free vibra-
tion of a rotating, beam-connected space station is considered by developing a
mathematical model of the system which represents the general three-
dimensional motion of the various components of the space station. The con-
figuration studied is composed of two space modules connected by a flexible
beam where the system is made to spin in the plane of its orbit in order to
produce an artificial gravity environment within the space modules. The
orbital configuration of the space station is shown in Figure {.

FIGURE 1. ORBITAL CONFIGURATION OF THE SPACE STATION

The kinetic energy and potential energy of the space station are
formulated in terms of a set of generalized coordinates, and a Lagrangian
function is developed for the system. Hamilton's principle is applied to
determine the governing equations for the motion of the rotating space station.
Boundary conditions representing the clamped-clamped attachment of the beam
to each space module are applied to the ends of the beam. Thus the mixed
problem of a continuous beam with two large end masses is reduced to the
problem of a continuous beam with nonhomogeneous boundary conditions.



The vibration of the space station is considered to be limited to small angular
and linear displacements from the motion corresponding to steady rotation as
a rigid body. Within the limits of this small deflection approximation, the
motion of the space station in the plane of rotation is shown to be uncoupled
from the motion of the space station out of the plane of rotation.

An exact solution is obtained for the beam deflection in the plane of
rotation. This solution is substituted into the appropriate boundary equations,
and a characteristic determinant is developed. In addition, the behavior of
the characteristic determinant as the frequency parameter takes on negative
values is investigated with five special cases in which the form of the exact
solution for the beam deflection is modified.

A procedure to solve for the zeros of the characteristic determinant is
programmed for digital solution on the IBM 7094, Numerical results of the
analysis for a given space station configuration are presented in Appendix C.

SECTION Il. REVIEW OF THE LITERATURE

During the last decade a considerable amount of emphasis has been
placed upon creating an artificial gravity environment within a rotating space
station. Suddath [1], Kurzhals and Keckler [2], Krause [3], Polstorff [4],
and others have studied various single body problems, while such authors as
Chobotov [5], Fowler [6]), Pengelley [7], Tai and Loh [8], and Targoff [9]
have discussed the problem of rotation of cable-connected space stations.

The concept of compression-member-connected compartments has been
examined by Tai, Andrew, Loh, and Kamrath [10] in a paper in which the
stability and response of 13 rotating space station configurations was investi-
gated. The configurations studied included single-cable-connected compart-
ments, multiple-cable-connected compartments, and compartments connected
by compression members to a central hub.

A recent paper by Liu [11] presents an analysis of two cable-connected
space stations rotating about an axis normal to their orbital plane. By using a
concept of concentrated fictitious masses and a Galerkin approach, a solution
was obtained for the free vibration of the rotating system.



SECTION I11. DEVELOPMENT OF THE MATHEMATICAL MODEL

Motion of the Stages

In order to study the motion of the rotating space station, the motion of
each of the two stages of the station is described independently. The position
of the center of mass of the ith stage at any time is given by

R = xT+y3d K i=1,2 1
R ( ) (1)
as shown in Figure 2. The motion of each stage is considered to have three
translation components such that

;.>=.—> . —_— .Izb _:1
Ri in + yiJ + zK. (i=1,2) (2)

- - - i
- ipal Axes
e‘i ' |2|‘03i Are Body- Fixed Principa x

-I’,T,i' Are Inerhia Space Axes af the Center of the Earth

FIGURE 2. POSITION OF THE ith STAGE

The rotational motion of each stage is represented by the vector sum of
five independent angular velocities shown in Figure 3.

— _.-—> . —— . — . — -; i=1’2 3)
wi_91+zpk+ﬁie§+aieci+'yis ( ) (



ROTATIONAL MOTION OF THE ith STAGE

FIGURE 3.



where 9 represents the rate of change of the attitude angle of the space station
in the plane of the orbit, y represents the rate of change of the elevation angle
of the space station from the plane of the orbit, Bi is the rate of pitch of the

ith stage about its center of mass, O.li is the rate of yaw of the ith stage about
its center of mass, and 3'/1 is the rate of roll of the ith stage about its center

of mass. Transformations from each of the five sets of axes to inertia space
axes are given by

r-—»— -—F—
i - g |1
i 7

| k] | K]

M — M=
e, = [Ty] FI = [Tyl I
z 7 7

n J J
epJ |k L K]
e, = [Tali ’—eé_ = [T321]i I I (i=1,2)
e, e, T
e e T
L % L 7] -




] 7] m T

= = i=1,2
® [Tal, e, [Tyz1l; I (i=1,2)
e, ey J
et: ec | K_

T | L i
[ ] [ — ] [~ ]

- - [T I i=1,2
ey [Tsli ep [ 54,321]i (i )
—_— — T]_»
€9 es
o3 Y B4

R |t i
where
[T = [t, o , o ]
0 , cosfg , sind
0 , -sing , cosg
- -
[Ty] = [cosy , sinp , 0 |
-siny , cosy , O
0 , O , 1 i
[Ts], = (1, o , o ] (i=1,2)
o, cosBi R sm,Bi
_0 , —smﬁi s cosBL




[T4]i= cosczi s smai , 0 (i=1,2)

-8ine, , cosa. , O
1 1

[Ts], = rcosvi » 0, -sinyi (i=1,2)

and _ .
[Tyy] = (cosy) , (cos@siny) , (sinf)sinzp)--l

(-siny) , (cos@cosy) , (sinfcosy)

( 0) , (-sim6 ) , ( cosd )

-

[T321]i = _(cosll)) , (cosfsiny) yoeenen N
(—sinz/)cosﬁi) , (cos@cosl,bcosﬁ’i - sinBsinBi) s eeenaan
(sinzl)sinﬁi) . (-cosecosz,bsin,Bi - sinecosﬁi) S e
., (singsiny)
- (sin@coszl)cosﬁi + cosesinﬁi)
..,(-siml)cosz,bsin,Bi + cosBcosBi) J

(i=1,2)




o

- =]

[T4321]i = (cosl,bcoscvi - sinz,bcosBisinai) g eer e
(—cosz/)sinozi - sinz,bcosBicosozi) S reean
(sinz,bsin,Bi) s eeereen

cees cos()simﬁco&vi + cosecosz,bcosﬁ‘isinai

—sinesinﬁisinai g e oo ens

ceey —cosesinzpsinai + cosecosz,bcosﬁicosozi

—sinesinﬁicosai y e eenns ;
U | -cosecoszpsinﬁli - sinecosﬁi) yee e
. sinesinzpcosc\ei + sinecoszl)cosﬁisinozi
+ cosfsinf isinafi

ces -sinesinzpsinozi + sinecoszl)cosBicosai

.+ cosesin.B‘icosozi

s (-sin@cos;psinﬁi + cosecosBi)

L —
(i=1,2)



[Tsasm), = B (cosycosa.cosy, - sinycosp sina.cosy, - singsing siny,), ]
( -coszl)sinai - sinzpcosBiCOSai) .

(coszpcosozisin'yi - sinzl)cosﬁisinagisin'yi + sinz,bsin,Bicosvi) ses

.., /cOSs0 SianCOSaiCOS'yi + cosf cosz/)cosﬁisinaicOSy,
i

-sinfsing is inoeicos'yi + cosfcosysing isiny_

i

+sin9cosﬁisiny, A
i

. —cosesinzpsinozi + cosé)coszl/cosﬁicosozi
-sinesinﬁicosai s e e

.oy cosesinz,bcosaisinyi + COSOCOSI,DCOSBiSinaiSin'yi
-siné)sinﬁisinozisinyi - cosecoszpsinﬁicosvi

—sinecosﬁicosVi s e

cees sinesinzpcosaicom/i + sinecoszpcosﬁisin(,vicos'yi
+cosesinﬁisinaicos'yi + sinecoszpsin,Bisin'yi

- cosf@cosf isinyi

. -sin@sinzpsinozi + sinecoszpcosﬁicosozi

+cosf sinﬁicosozi

. s /8ind sinzpcosaisinyi + sinfcos zpcosﬁisinais in—yi
+cosfsing iSinaiS inyi - singcosysing {C0sY;

+Cco08s0 cosﬁicosvi

(i=1,2)

The components of the an_gylar velocity about a set of body-fixed principal axes
of each stage (e {0 €y » e 3 ) are determined from
. i ,
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— =0—> O—E . — . g ® - i R o —r
w; =01+ yk+fe, +ae +ye, =w,e tw,e, +twge,
1 1 1 1 1 1 1 1

(i=1,2) (4)

Using the transformation equations to write T;, e s E.c s _é; s _e.i . _é-z , e. in
e § i i i i i
terms of the inertia space axes I, J, K, we solve equation (4) to obtain

w = é(cos¢cosaicosyi - sin¢cosBisinaicosyi - sinll)sinﬁisinyi)
i : .
+¥ (sinB sina.cosy, - cosB sin .cosa,C - & .si
( i ,cosy, Bl 'yi) + B1 osajcosy, - & simy,
(i=1,2) (5)
w, =—ésincoscos_+css'_ dsi - B.si .
2. (siny Bi y; + co P ina,) + ZPsm,BiCOSOzi Bsing, + vy,
(i=1,2) (6)
C é(sinzpsinﬁicos—yi - sinz,bcosﬁisinaisinyi + coszl)cosaisiny_)
i

+ip(cosB,cos . + sinB sinw . siny.) + B.cose.sin .+ @.COS
i Yy nBl i i Bi i Yy i yi

(i=1,2) (7)

Configuration of the Space Station

The position of the space station at a given time is shown in Figure 4,
where the origin of the inertia space axes is fixed at the center of the earth.
Points 1 and 2 represent the centers of mass of the stages while points P; and
P, represent the ends of the beam connecting the two stations. Vector (_i’i is
the directed distance from the center of mass of Stage 1 to the connection point
of the beam and vector 'c_lz is the directed distance from the center of mass of
Stage 2 to the point where the beam is connected to Stage 2. The unit vector
E;’ is along the line from the center of mass of Stage 1 to the center of mass of

Stage 2. The unit vector e is along the line drawn from P; to P,. Thus
we have P1P2
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I_fp = 1—1] + a: = (x4 - djcos¥singy - djsinPcosp; cosozi)_I->
i
+( yi - dicosfsinysingy + djcosb cosPcosBicosay\J
- disinfsinBicosa
+[ 24 - disindsinysine;+ d;sinfcosycosBicosa K
+ dycosfsinBicoso
ITp = I—{; +<—i; = (X, + dycosyPsingy + dysindcosBycosay) T
2
+ yq + dycosfsinysingy - dycosfcosycosBcosay \J
+ dy;sinfsinBscosay
+[z9 + dy sinfsinysinay - dysindcosyPcospycosay K
- dycosfsinB,cosay
diz—dmen: 2 -Ri=(X-x) I + (y2-y1)J + (22 -2z9)K
(—i’ =d ; = ﬁ - ﬁ = ag;z + a_; - (-1-;
PiP2 PiP2 PiP2 P2 P1

—
Xy - X3 + dscosysinay + dysinygcosBycosasy \ I

+ djcosysing; + djsinycosficosqy

+/fys -y1 + dycos@sinysina, - dycosfcosyPcosfacosay\J
+ dysingsinBycosay + djcosfsinysing

- dycosfcosycospcosay; + disingsinficosoy

+/ 2y - 2y + dysingsinysiney - dysinfcosyPcosBacoson \ K
- dycosfsinBycosay + djsinfsinygsingy

- d;sinfcosycosBicosqy; - djcosfsinBicosay



FIGURE 4. POSITION OF THE SPACE STATION

The unit vectors (E. , e
v DPiP2

Vector E.w lies in the plane of the orbit and defines the direction of the beam

, —e’w) describe the beam orientation.

deflection w(r,t), while vector e is orthogonal to Y and e and
v PiP2 w

defines the direction of the beam deflection v(r,t) out of the orbit plane.
These vectors are derived in Appendix A, from which we write

—_— —_—
e =1
v

—

Xy - Xy + dycosysinay + dysinPcosBacosay

e

+ dycosysiney + djsinidcosBicosoy

—
Vs - y1 + dycosOsinysina, - dycosdcosipcosBacosa;,

+ djsinfsinBacosay + djcosfsinysingy

- djcosfcosycosBicosey + disinfsinBicosoy
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Nl

Xy - xq + dycosysinoy + dysinycosfzcosap

+ djcosyPsing + djsinycosficosey

z, - Z; + dpsinfsinysiney - dysinfcosycosBycosoy >

- dycosfsinBycosa, + disinfsinysing

- disinfgcosycosp cosoy - djcosfsingicosoy

—

}

—

I . .
e ¥ - ® dycosysing; + dysinydcospficosoy
P1P2

+ djcosysing + djsinycosficosyy

ey

ys - y1 + dpcosfsinysing, - dycosfcosycosBcosay

+ dysinfsinBicosay + djcosfsinysing

- djcosfcosycosB cosey + dysinfsinBicosy

ol !

——

zy - 21 + dysinfsinysiney - d,sindcosycospcosay

- dycosfsinBycosay, + disinfsinysing

- dysinfcosycosBicosa; - djcosfsinBicosoy

)

- =
Zy - 21 + dysinfsinysina - dysinfcosycosBrcosay
- dycosfsinfcosay + disinfsinygsing

- dysinfcosycosBicose; - djcosfsinBicosay

t Ry

A
yo - y1 + dycosfsinysingy - dycosfcosiycosBacosay

1 dysinfsinBacosw, + dicosfsinysing

- dycosfcosycospicosey + d;sinfsinBicosqy



Motion of the Beam

The position of a point on the beam at any time is given by
I_{ r,t) = E+E+r; +w(r,t); +V(r,t); (8)
e 1+dy D1Ps W v

where r is the position along the beam longitudinal axes measured from Py,
w(r,t) is the deflection of the beam in the direction of ew measured from

the vector €. , v(r,t) is the deflection of the beam in the direction of E;
measured from the vector E; Dy’ Using the vector identities of the previous
1P2

article, we write

—

Rc = [ X; + dy( -cos¥singey - sin¥cogBicosw;) I

r . .
L BT dy,cosysina, + dysinPcosBycosan| + v

+ djcosysiney + dysinycosBicosoy

“l

+ y; + dyf -cosfsin¥sing; + cosbcosyPcosBicosgy

-sinf sinB cosqy

—

+ Y2 - y1 + dycosfsinysinay - dycosfcosyPcosBicosay

L
L
+ dysinfsinfBycosay + djcosfsinysing

- djcosfcosycosBicose; + dysinfsinBjcosq

[~ . : . R
Zy - zy + dysindsinysinay - dsysinfdcosycosBycosay

Sl E:

- dycosfsinBscosqy + disingsinysingy

- d;sinfcosycosBicosqe - djcosfsinBicosy

15



v . .
T R ! + dycosysing, + dysinycospgcosay

+ dycosysing; + disinidcospicosay

yy - y1 + dycos@sindsinay - dycosfcosiypcospycosay
.| + dysingsing,cosoy + djcosgsinygsing

- dycosgcosycosp cosoy + djsingsing cosq

+ zy + dyf -sinfgsinysiney + sinfcosycosficosy

ol

+ cosfsinBicosy

rr . . . .
N e dysinfdsinysinay, - dy;sinfcosycosfycosa,
- dycosfsingB,cosay + disingsinydsinoy

- d;singcosycospicosqe; - dicosfsingcosoy

p—

w N
e RL IR £ dycosgsinysing, - dycosgcosypcosp,cosoy

+ dysinfsinBycosay, + djcosfsinygsing

- djcosfcosycosBicosa; + d;sinfsinBicosey

=

\4 . :
- I Xe-X o+ dycosysing, + dysinycospy,cosay

L+ dicosysiney + djsingcosficosy

z9 - 2y + dysingsinysing, - dysingcosycosp,cosay
« | - dycosfsinBacosay + disinfsinysing

- dysinfcosycosp;cosey - d;cosfsinB;cosqo

Using small motion approximations for 3, B1, B2, 1, @2, V, W and neglecting

third order and higher terms, the position vector 'ﬁc(r,t) becomes
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—

o r r T
RC = Xy - Z,b(dl + dlzz - dlz - dzI) I

+ 0{1(‘.’111 - d1> + O dg%J + Vv

L
+y1 + d10059<1 -%IPZ - %Bf - %af - ¢a1><1 - —i) T
- d20089<1 - %lpz - %ﬁ% - %ag - lsz)%
- dlchSG% - dyfisind <1 - —IIL‘ >+ d,B3,8ind %

- % I:(d12 ~dy - dy)sind - (dBy + dyBy) cose]

v
1.2 ["b(dlz -dy -dp) + (djoy + dzaz)](dlz - d; - dy) cosb

. 1 9 1.2 i 9 T -
+ 24 + dlsm@(l - Ezp - 5[31 - 5% - z,ba1><1 -I> K

i 1 2 1 2 r r
_ ind o=t = _ = _ = ing —
dysin (1 21,0 232 5 02 z/)oz2> Lt dyysin I

r r
+ d4B1cos0 <1 - I) - dyB;cosf T

+ %l:(diz -dy - dy)cosg + (diB; + dgﬁz)sine]

\ .
- ? [—¢(d12 - d1 - d2) + (d1a1 + dzaz)](d12 - d1 - d2) sing

(9)
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Thus the vector velocity of a point on the beam is

I!

(@]

\ . r T r . T . fr
Xy - ¢é1 + d12I - d1z - dz‘i) - ¢d12‘I‘J + d1011<‘i - 1>
+ dza.z f+‘./

|

yi + dlcose(-qbzb - BBy - 041&1 - zpdl - oz1z;b)(

isi Lo lg2 15 r
- d1931n9<1 - ¥ - GBl- ok - Yol - 7

- dycosO( -zp{[) -

1
~——

BaBy - ondy - Yoy - CVz‘.P)'E

.. ie 1 i T - . r
+ d29s1n6<1 - EZP - EB Eaz zpa2> L - dyy98ing —

L
4+ dlzcose—% - d161écos9 (1 - —%) —d1[§1sin9 (1 - £>

L
+ dzﬁgecosei 4 dzfﬂzsinf) =

L

-% (dyy - dy - dy) 6cosy + dypsing + (dyBy + dyB,) H5in0
~(df; + dyBy) coso (

-2 [(d12 - dy -dy)sind - (45, + dyfy ooso]

r‘J <

[ Zp(dlg - d1 - dz) + (dlal + dzaz)]

(d12 - d1 - d2)9$1n9 + d120039]

L—'|< r—1

[ dip¥ -9 (dgy - dy - dy) + (dyoy + dzaz)]

(d12 - d1 - dz) COSGJ

l"_ﬁ
< -

"L l: P(dip - dy -dy) + (dyoyy + dzaz)] (di2 - dy - dy) cosp

i8



+[ 2y + d;sind (-9 -BiBy - aycy - Yoy - o) <1 - %) K

. 1 9 1 9 i 9 r
+ d190089(1 - "2—lp - _2"61 - _2_a1 - Zpai) <1 - _],:">

dysind( -9 - BoBy - awon - Yoy - 0121»5)%

. 1 9 1 9 1 9 r
ds0 coso (1 - Ez,b - EBZ S50 Zpaz)I

dlzé cosg

+

r - N 4 - r
E7 dyy sme—i - diﬁ19sm6<l - —I:)

+

. r SR § : T
d,3,coso <1 - I) + dgﬁzesm@-i - dngCOSQI

+% -(dyy - dy - dz)ésine + dlzcose

+(dyBy + dyBy) Bcosh + (dyBy + dyBy) Sing

+% [(dlz - d1 - dz) cosf + (dlﬁl + d2BZ) sin@]

~ _E?[—Zp(diz - d1 - dZ) + (d1a1 + dzaz)]

« |(dgz - dy - dy)fcoso + 812sin9]

L
- v_2 [-aizd’ - Zb(dm -dy -dy) + (d10.l1+ dzélzil

. (d12 - d1 - dz) sin6:|

]
F‘NI<'F

[—lp(dlz - d1 - dg) + (d1a1 + dzaz)] (d12 - d1 - d2) sinf

(10)
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Constraint Equation for the Configuration

The vector from the center of mass of Stage 1 to the center of mass of
Stage 2 has been previously identified as dy;. Consider the plane formed by dj,

and k as shown in Figure 5.

» COS @z cos P2

FIGURE 5. THE PLANE FORMED BY d;,, kK SHOWING THE PROJECTED
LENGTHS OF THE CONFIGURATION

The angle between the beam longitudinal axis and the plane of 8’12, K is

«, where

sing ~q = disingy + dpsinay | djy + dyop
d L
P1P2

1

- 12 (dyoy + dyon)®

2:1
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so the projection of the beam onto the (—:1’12, T{.plane is LDCOSE. LD represents
the deflected length of the beam.

Similarly, the angle formed by the line of length LDcosa with the line
drawn between points 1 and 2 is B, where

_ _ osi .
sing &~ B = djcosa;sing, +_Ad3cosa2s1n,82
LDcosa

i 1
d1,31<1 - 5“%) + d?ﬁ2<1 - Eag)
) ~ 418y + dyBy
L

14

1
LD[l —‘2—L§(d1a1 + dzaz) 2]

(neglecting higher order terms)

ra 19 1 2
and cosg = 1 -9B% = 1 -5r3(diBy + dfy)

Thus we have

djs(t) = djcosajcosB; + LDcos&cosﬁ + dycosapcosB,

1 1
=~ d <1 - 59 - 53?)

1 1
+Ll:1 —EITg(dﬂ)q + dyon)? - ﬁ(dﬁl + d?ﬂz){'

Lf/ o o\2 : ‘
B @] slre )
0

which is the constraint equation of the configuration.
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Kinetic Energy of the Space Station

The total kinetic energy of the space station is composed of the kinetic
energies of Stages 1 and 2 plus the kinetic energy of the beam. Therefore,

!
_(IA) 3(1)%1

. 1 ) 1, "
—M R1 + 'Z‘(IA)1CO11 + E‘(IA)zwgl + D)

Trotar = 2Ma

1. ) 1 X 1
+ o MRE + (B jwf, + 5 (B w3, + 5(IB)3w§2
L .
+l mR 2dr i
p . (12)

where ﬁl and ﬁz are given in equation (2)

97 w3 are given in equations (5), (6) and (7)
i i i

is given in equation (10).

O:Ul.

Potential Energy of the Space Station

For an orbiting space station the gravity field of the earth is associated
with the centripetal acceleration of the mass center of the space station in its
rotation about the center of the earth., We wish to study only the motion of the
space station superimposed on the translation of its center of mass and neglect
the small effect of the gravity gradient. Therefore, we consider that the poten-
tial energy of the space station is the internal bending energy of the connecting
beam, written as

L 2 2 L 2. 2
i 9w i 9%y
U > { EI <__2—8r > dr + 2 _g IV<—2-81‘ > dr (13)

and for the béam used in the analysis IW = IV =L
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SECTION IV. DERIVATION OF THE GOVERNING EQUATIONS

Development of the Lagrangian Function

We now have the kinetic energy and potential energy of the space station
given in equations (12) and (13). We write the Lagrangian K = T - V to obtain

1. = 1 1 1
K = MR} + S(IA) 0] + S(IA) 0] + S(IA) 05,

i.. = i i i 9
+ SMRE + S(IB)jof, + 5(IB)wi, + 5(IB)3wj,
L .
i =
+E f Cdr
0
un(2y) o 23 )
1 7 ;) 1 9
- - - = 14
20EI<52‘) dr 2{EIW dr .(14)

Hamilton's Principle

By application of Hamilton's Principle in accordance with The Calculus of
Variations we obtain, after substituting the constraint equation and neglecting
second order terms,

t
szKdt:O
ty
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M - M - L)

A

L
2 2 2 0

- A'S;1 - MB('3;1 - Lj’cosg - L¥sing)

-mL

L

+f

0

. 1. 1., 1. . .
yi - =d,0%cos0 - —dfsing + =d,f%cosh + ldz(Jsin@
2 2 2 2
1~ 1~ 1 . 1. -
- g L6%cosy - SLésing + 5d1Po"sing - ZdAifcoso

- dliiiécose - éd{ﬁ;sine - %dzﬂzézsino

+ %dzﬁzb'cose + dy Bzécose + %dzﬁzsine

-m(wf2sing - whcos@ - 2wfcosf¢ - wsing) dr

-M zi - M (z1 - Le 2sing + Lecose)

-mL

. 1. .. i... 1. .. 1...
zj - Ed192s1n9+ Edlecose+ -2-d292sm9 - 5da0cosd
~, ~.. 1 . i e
- 1-L@zsin9+ lLecose - —d13192c0s9 - —dyB40sind
2 2 2 2
. . 1 -
- dB,08inb + Ediﬁlcose + -2-d2329 cosb

. .. 1 e
+ —;—dzezesin9+ dyBs08ing - Edzﬁzcoso

L
+ [|-m(-wh2%cos§ - wosing - 2wfsing + wcosg) dr

0

(ledt

6y ldt

6Z1dt



MBE (Z1cos0 - yysing + L) - (IA)4(6 +5,)

- (IB) (6 +B3)

1 000 1 50 1%~p.. 1. | fee . .
§d10 + -3—d20 + §L 0 - §Y1d15m9 + —z-yldzsme

-mL

1..~ i.. i..
- Eyil_sino - Eyidiﬁicose + Eyidzﬁzcosf)

+ %Eildicose - %'z}dzcose + é—’z‘iLcose

. ) 1.. ) 1. .. ~..
- %zidlﬁisme + '2—21(123281119 - §d1d29+ %dlLB

1 ... 1 e 2 ~. 1 e 1 ..
+ gdfﬂi - gd1d2B82 - Jd2Li6 - gd1d2B1 + gdgﬁz

1 ~ s
+ EdlLBI -

i

gdzLB 2

+ f -m |-y,wcosg§ - z;wsing - dﬁ/(% - 1> dr

T M. T
—dzwL+LwL

tz ~ R LX) . -
+ [ Mo L(%; - Ly) + (IA) (671 + 6v1 - 0%9 - 6 ay)
t

+ (TA)20(60 + Ocy - v)) - (IA) 3(Byy + Oyy + 0y + ¥)
+ (IB)1(é’;’z + Oy - 0% - 0%0y) + (IB) 20 (6% + 0ay - v3)

- (IB) 3(0yz + Oy2 + 0p + %)

66dt

ydt
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-mLj

+

.1 1 i..
- d2a2<5d1 + §L> - Eyidicose(zp +04)

i.. i..
+ Eyidzcose(z,b + o) - -2—z1disin0(¢ + o)

1 . 1 ~.
- gdidzez Y+ oy +ap) + gd1L92(¢ + 0q)

1.~
- 3dLo* (¥ + o)
-

L

f -m |-(d; + )V + ¥,co80v + Z;sinfv + d192<

L
0

.2_:_[; ~.2£
df v - Le Al

d d i .o oo
MBdl (1 + “L‘L>31 + "izﬂz + Ede1B1 (yqcos6 + z;8ing)

i d d
+ -2—de1 (1+—LL >31+—2Lﬁg
d L
-1
- m L 0fwdr

i .. _
Edel(zlcose - yi8ing)

—

~, ~. i . i .
'MBdlLez + %deiLe2 + Emmfez - gdeidzeZ]

=

1+%) 1+—232 - (IA) (8 +By) - 1de131

-—1”—.1>vT

[_ip_'(dﬁ + diL + %Lz )-- 5(}((11 + %L)-i' %dlafl(di + %1—5

1 1
+ 1Zidzsm9(¢+az) + _die (b + oq) + —d9 (¥ + a)

dr

—

08,dt



+ lmldidzﬂz - mL( dl + —diL)G - dei(dl + L)9 Bi

m 3t fL[-(r L)W - diézw:ldr

- Lra,dsn%, -
6 0

1l

]

d d 1 . .
M d, (1+ —ﬁ-)ﬁz + —ﬁﬁi - SmLdyB; f(yicosy + z4sing)|

+ —;-dez('z'icose _ ¥;sing) - (IB) (6 + By

i ~, ~, vy 1 ,
- MBd2L92 + %ml:dzLez + %deidsz - gdegez]

d d 1 L .
. <1+ —If>32+ -fﬁi - Emlad%ﬁﬁ ¢ mLdydzB4
a

. 1 1 1 .
+mL (—;—-didz + %d2L> 0+ mL<-2—d1d2 + -3—d2L + Ed%)ezﬁz

L

. d
- é—mmidzezﬁi - nl_1

1 j (-tw - dibzw)dr
0

d
-1
MBdi <1+ L
1 g9 4y
+2de1 <1+L>a,+ La’z

L
Jvar + —ml.d1(§b + o)
0

4

y + o (¥icoso + zsing) -

4
+ m

8,dt

60lidt
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~ . ~ o 1 - .
- [MBd1L02+ %deiLBZ - gml,did292+ %ml.df@z]

. Q%})o« +%§az + (IA) 187y + 07y - 6% - 6%0y)
+ (IA)Z(ézzp +é2a1 - éﬁ.&) - (1A) 3(é‘;'1 +.é'yi + 0+ &.1)
1

- 'gmm%(.l’; + éml.dp.{.l - %ml:dll.l;éi + %L) + %deidzc.!'g

- del(édi -||- éL)(ZP + ai) é?

L
- mgi f [(r - L)v+d192v+r92v] dr
0

L
_ —
M_d,l{1 +—42 oy + 21041 (s}lcose +..'7:1sin0)
B L L
1
- oL + o)
1 d d
+ -2-de2 (1 + -—f)ozz +—L'La1
d L
=2
+ m-— 0fvdr

~, i ~, i .y 1 .
- [ MdeLf)2 + EdezLGZ + Eml_dldze - §-de%92:|
d, d, .. . ‘Y ‘Y
« 1+ L oy + Laq + (IB) 4(0yy + 8vyy - 0°Y - 0%y)
+ (IB) (0% + 6% - Oy;) - (IB)g(Oyy + Oyp + ¥+ ap)

.o .e .o 1
- —de%cuz - %dele + mILdyy (%dl + g )

(50[2dt



ty

+J

ty

i . 1 i .
+ Emldidza1+ mlLd, (Edl + EL) (¥ + on) 62

L
-m-ng(ﬁ+d1é2v+rézv)dr
L 0

~(TA) {02y + 0% + Boy) + (IA) (0% + Ooy + 0P+ Oy - Vy)

+(TA) 3(6%1 + 6% + Ooy)

| +(1B) 5(6%y, + 00 + Oaw)

L 2 \ 2
({ '1"113313“”““<L31Jr LAz)* gmbp T

. [3}10036 + 'z'lsine] - m('z'icose - y4Sing)

~ 1 1 .zazw .o o
- = —y - - wo
+ MBL+mL<2d1+ 3 )9 Py m(w - wi*)

- m(d; + r)b' + mdi.éi(LL - 1) + mdz.B.Z%

d . d -2 a‘w
\+ md, (1 + —If)ezﬁi + mdi—lfe B2 - EIW

a2w [ aw L
-El 6 — dt
or ( or ) r =0

~(IB) (0%, + 0% + Oay) + (IB) (0% +0ay +0% + 00y - v9)

Sy dt

Syt

owdrdt
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+ ftzf -M _a_z_v? +m -ll)+—£1a + —d—za - lmL——g évdrdt
B or Lt'" L% "2 " ar
. ['3;10050 + 'z.lsine]
~ 1 i :9 2y .o .o
+ I:MBL+mL<2d1+ 3 >]9 -g—rz - mv - mxy

+ m}ﬁ(di +7T) - mdl.cii (% - 1> - mdyog %

L L

L
+ f [ EI——}é(g:)] 0 dt (15)
.

- méz(-zl)+ —dia1+ EZaz>(d1+r) —EI—a-iY;

Now we note that x4, yj, Z; are independent generalized coordinates,
so we have three equations associated with the coordinates, written as

~ i
. MpL =+ mL<d1+ 2{‘2 . mLd, *° mld, '
Xy = 1 - 2
MT 2MT 2MT
n |
- — [ vdr
1
Mt 0 (16)
. ML My -
yi = 9%cosf + M Losing
T T
L . .o . o e
- ._Mll_ f (wh?sind - whcos§ - 2wbcosd - wsind) dr
T ©
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- zl;;‘— (L + 2d,) 6%os8 + (L + 2d,)6 sind + (dyB, - d,B,) 6 %sing
T

- (dgBy - dyB4) Hcoss + (d1,}3;1 - dyBy) sing

+ 2(d; By - dafBy) 6 cose

(17)
MBL ) MBL'-
21 = — 0%sing - 6cosb
T T
m L . e .. e
- — f(—we 20080 - wOsing - 2wfsind + wcosh) dr
M
T O
+ ;II:/IL (L + 2dy) 62sing - (L + 2dy) fcosh - (dyBs - dlﬁl)ézcose
T . ..
- (dng - dIBI) fsing - (dlﬁi - dzﬁz) cosg
+ Z(dlbl - dzb2) ésin@
(18)

Combining equations (17) and (18), we may write

.o . MBL mL .. mL .
z;cos0 - y;sinf = - + (L +2d)[ 0 - = (dyBy - diBy)0°
M 2M 2M
T T T
mL .o .o m I‘J . ..
- ZM (dIBI -dsz) +_1VI— J (W92 —W) dr
T T O

(19)
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and
M_L
. . B mL c9 mL
z,8inf + y;cos6 = + (L + 2d;) |07 +
MT 2MT 2MT

(dgBq - dyB5) 6

L
+ B (a8, - 480 + 37— [ (w0 + 2we) dr
0

MT T
(20)

We alse have 6, ¥, vy, Y2 as independent generalized coordinates with

associated equations given by

[MBLL + (IA){ + (IB), + mL<df 4 %Lz N d1L>] )

i~ 1 Y e
+ [MBL + EmL(L + 2d1)] (z4cos6 - y;sinf)

0 0

" l:(IA)1 " de1<%d1 + %L)];B'i + [(IB)1 - mLd, <%d1 + %L>:Iéz = 0

(21)

L L
1 e ) .o
- [EmL(diﬁl -dyBy) +m f wdr:I(ylcosE) + z48inf) + m f (dy + r) wdr

ML(x; - L) + (1A) 1674 + By - 6% - 6%0y)
+ (IA)0(09 + 0ay - vy) - (IA)3(0ys + Byq + 9 + @)
+ (IB) {(0yy + Oy - 0% - 0%y) + (IB)20(8Y + 0y - vo)

- (IB) 3(8ys + 6v2 + ¥ + o)
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-mL

- dz.a.z <%d1 +

+ d16 20!1 <%d1

.o .. 1 1 .o
zp(d% +dL + %L2> - x1<d1 + -2-L)+ Edioq <d1 +

i

5v)
1 1

d1d2 + ‘6_d1L - §d2L>

)

1) ol L
3L>+91,b<2d1- 5

1 . i 1
EL) - d262(12<§d1 +

+ 3

L

+ —;-mL[di(z,b+oz1 )-dy(P+ )] - m fvdr (§1c0s9 +'z'1sin0)
0
L e .
+ fm(d1+r)(v+02v)dr = 0
0 (22)
- (TA)gvy + (TAY00 + (IA)38ay + [ - (IA)g + (T1A); + (TA)310 ($+ o)
+ [ -(IA); + (IA)s]éZ'H = 0
(23)
_ (IB)gys + (IB);6%+ (IB)s0ay + [-(IB)y+ (IB)y+ (IB)3] 0 (% + o)
+ [ - (1B); + (IB)glo%y, = 0,
(24)

Boundary Conditions of the Beam

The boundary conditions represent a fixed attachment point at each end
of the beam. That is, the beam deflection and slope at each end are considered
to be consistent with the motion of the respective stages. The derivation of
these boundary conditions is shown in Appendix B, from which we write

By = % [-dyw,; (L,t) + (L +dy) w,4(0,t) 1

(25)
L
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By = — H(L+dw,y(L,1) - dgw,{(0,0)] (26)
L

o = = (4, (L,1) - (L+dy)v,1(0,5)] 27
L

Gy = = (- (L+d) v (Lt) + dgv,1(0,0)] (28)
L

The Governing Equations

By substituting equations (16), (19), (20), (25), (26), (27), (28)
into equations (21), (22), (23), (24) and the remaining terms in equation
(15) and by neglecting second order terms, we obtain a set of six independent
coordinates (0, ¥, v1, v2, W, V) which yield six governing equations and eight
associated boundary conditions. The equations are shown below as

~ s ~ o ~ ~ L.. L ..
Cif + Cqw,1(0,t) + Caw,y (L,t) + C; [ wdr+m [rwdr = 0
0 0
(29)
r . " ~ Cd Ca(d .
Coth - Cg0yy - Cgly, - C4821,D - — - Celdi + 1) ~+ L) 92V,1(L,t)
L L
Ce(dy + L)  Cedy | - Cydy  Cy(dy + L)| --
A ot Bl S i T 4
i, 2 + =S ok, (0,1 - | AR L ( L ) V. (L, t)
L L L
' L
Cyo(dy + L) c.d |- .. .. ..
1032 T )
- — - =V, (0,t) - Crbyy - Cebys - Cyp [ vdr
L L 0
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L.- ~ o, L . L
-m frvdr - C792 f vdr - mo? frvdr = 0
0 0 0

(TA)yy; - (IA),09 - (—Lt)zgzldv,l(L,t) + (—I‘ﬁz(f—J"‘iﬂ'év,I(o,t)

L L
voopr S%py (g o Sl ddag o4 4 cpity, = o
L L

(IB)yY; - (1B)y o9~ 2ty o,y » By (o

L L
. .. d .. .
+ Cy 09+ gﬁNgi—ev,i(o,t) - —(—:8(—1‘?+—LBV,1(L,t) + Chlyy = 0
L L
. . ~ . mi? * m? L.
mw + EIw, 44 - mow - 02492w,11+ — fwdr - — fwdr
M
T 0 TO
~ . { 2 .
+ (Cq+ mr)d - —-[CQO(L+d2) , mlddy mdir:| W, (0, t)
~ 2M 3
L T
2 .
- 1 l:_czod2 - ﬁ—ng—(L+d1) +md2r] W,y (L, t)
~ 2M
L T
1 ~ ~y - .
- = [Cip(L +dy) + Cagdy] 0%w,, (0,¢)
L
1 ~ ~ -
+ — [Ciady + Cop(L + dy)] 0%,y (L,t) = 0
L

(30)

(31)

(32)

(33)
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and

36

2 L .
mv + EIv, 1341 - Cpy0%,11 - _Mm_ f vdr - (Cyy + mr)d
0

. 2 .o
- (Cq¢+ mr) 0%y —1~— Coo(L + dy) + %M—l—mz- + mdlr:lv,l(o,t)
L T

i mZLdz __L ZV

‘: Czodz + oM (L + d1) - mdzr V,1 (L t (C7 + mr) 6°v, 1(0 t)

L T T
- %(57+mr)é2v,1(L,t) = 0 (34)

L
w(0,t) = 0 (35)
w(L,t) = 0 (36)

Elw, ;;(0,t) + Dy + Dyw, ; (0,t) + Dgw, (L, t) + Ds0%w, (0,t)

L L L
+ D592W,1(L,t) +D692 fwdr+D7 fwdr +r_ngl frwdr =
0 0 L 0
(37)
Elw, 11(L’t) +D8b' ‘DS&’I(()’t) +D10“A;’1(L’t) -D592W,1(0,t)
. M L L.. md L .o
+ Dyp0%w,;(L,t) + Dy36? [ wdr + Dy [ wdr - =% [rwdr = 0
0 0 L 0
(38)
v(0o,t) = © (39)
v(L,t) = 0 (40)



L d .e d .o L. -
Elv, 3 (0,t) - (—:—‘ﬁ C50vy + —1Ce0v, - (Lrd) :d C072
L

L L
+ - Cae'}’z - Dlsz,b- D169 l,b-i- D17V,1(0,t) + D18V,1(L,t)
L
. . d ~ . d . L
+ D1902v,1(0,t) +D2092v,1(L,t) + -:LC762 fvdr+ —jm@"’ frvdr
L 0 L 0
L g L
+ Dy [Vvdr+ —tm [rvar = o
0 L 0 (41)

d . L +dy N d s L + d, ..
Elv, 33 (L,t) - —2C50v, + ( ~ )06972- —2Cq0vyy + ( )089’)/2

~

L L L L

- Dyl - Dy3b% - Dygv, ;(0,t) - Dygv, (L, t) - Dyyb%, (0, 1)

_ do~ .. L q L L
- Dyb%,;(L,t) - —2C;0% [ vdr - =2m6? [ rvdr + Dy [ vdr
L 0 L 0 0
d L.
-—sz frvdr = 0 (42)
L 0

where the C's, C's and D's are combinations of physical constants given
below

o~ 1
Cl = MBL + 2mL(L+ 2d1)

MBEL + (IA); + (IB); + mL(d?+ %L2+d1L)

Q
-]
I

Q
w
I

(IA)1 -+ dei( %di + %L)
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1 {
(IB); - mLdy (5dy + gL)
(IA); - (IA)3
(IB); - (IB)3
(IA); - (IA); - (IA)3
(IB); - (IB); - (IB)3
(IA); + (IB)3 + mL(d? +d;L + %LZ) + MBiZ ,
(IA); + —mLd(d; + i, . mLdC
2 3 2M
T
(IB); - mLdy( 1d1+ 1L) + mLdyCy
2 3 2M,

mldy - gt
T
d 1 d
9 LS 4
dy MB(1+ L) + mL<2+ L>
Lo G2
dl(MB + sz) I
M L+ mL<Ed1+ 3 > d,‘<1 +—1>
~ i 1 T
MBL + mL<2d1+ 3L>
(I1A); + é—def
1
—G—deidz

2
_Cf

M

T



-:?ml.d1 (d1 + L)

MT2

d i
=2 -
[MB <1+ L) + 2md2] d,
~ 1 1 d
= = =2
I:M L + mL<2d1+ 3L>:| d2<1+ L>

(IB); + %de%

it
|5

%(LmL } MT)

1
d —_— —
{ + L + 3d2>

B |

m°Ld,

2MT
(IA)3 + _del <d1+ 3L>

1
(IA); + §de1
i 1

(IA)1 - (IA)2 + deI(Edl EL)
(IB) Ld,( La, + L1
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il

(IB)3 + %de%
1 1
(IB); - (IB)y - de2<§d1+ §L>

~ 1 i
M_L + mL(Ed1+ —§L>

Ci
C, M
T

CS(L+ dl) _ Cldel (L+ 2d2) _C_4(il

~

L 2MTL L

_sz + Cide;Z (L + 2d1) + C4(I':+ dj!

L 2MTL L

~(IA); + (IA); - (IB)g + (IB), - mL< %df -

mLC
+ —=1(d; - dy)

ZMT
mLd;C
-C3 + (IA); + —':‘Z‘MLL
T

C, + (1B), - 2LdCy

ZMT

mCy

Mp

md1 -

1 1 i
Edidz + EdlL - gdz

2



fl

- Cyq
4MT
2.2
m~Ld,d,
Ci8 - “a
T
C,Cys m?L.%a?
lifli - 4M1 - Cgi5 - Cy9
T T
CiCia mszd d
M1 4_N‘[1J - ClG - CIB
T T
Cy mL (dy + L)
md1 - -
L
MT 2MT L
2c 212
m°L“d
- Cys
4
MT
C,C m?1.%d3
T T
ml.d;C,
oM - Cyy
T
mld,Cy
2M - 029
T
25 242
m“L°d
4M - Cu
T
C,C
_i‘,[‘n - Ci5 - Cy
T
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It

1l

It

mLd,Cy
oM -+ C30

mLd,C, + Cs

[Gs(L+dy) - (IA)(L +dg) - Cedy + (IB)ydy]

e =

L (8L +dy? - 28,d(L+dy + Cpad?]
T2

L
L Gy(L+dpdy + Cy(L?+ dyL + doL + 2d;dy) - Cys(L + dy) dy]
iz

1 ~ ~ o~
~— [Cyp(L +dp)? - 2Cy(L +dp)d; + Cy4d?]

LZ
LG (L + dg)dy + Gyy(L? + dyL + doL + 2d;dy) - Cyg(L + dy) dy]
T2

L



| IIE

Il

]

i

1 o~
== [Cy2(L +dz) - Casdql

L

1

= [Cao(L + dy) + Coedyl

L

1 ~ ~

— [Csdy - (IA)ydy - Cg(L+dy) + (IB)a(L+dy]
L

L 1 8@ + 20o(L+ddy - Opa(L+dp?]
iZ

1 ~ ~ ~v

— [-Cypd} + 2Cy(L+dy) dy - Cyy(L +dy)?]
i2

- [012d2 - C25(L+d1)]

L

1

: [C20d2 + C26(L+d1)]

L

1 ~ ~
: [015(14 + dz) + C19d1]

&

[EIG(L + dz) + 620(11]

B2 |-

1 7 ~ ~
o [Cip(L+dy? - 2Ce(L +dy) dg + Cpdi]
L

1

o [-Ciz(L + dy)dy + Co(L2 + diL + doL + 2dydy) - Coy(L + dy)dy]
L

43



Dyg

1 ~ ~o ~ ~
= ~_2[C18(L+d2)2 - 2(Cyy + Cg) (L +dg) dy + Cyppdi]
L

1 Lad ~ ~
= — [—Cig(L -+ dz) d2 + (C“_ -+ C9) (IJ2 + dlL + dzL + Zdldz)]

EZ
-Cgo(L +dy) dy

1 ~ ~
= —[Cy(L +dy) + Coadyl

=

[Ci5d2 + 819(11 + dl)]

o =

[016d2 + Cgo(L + di)]

F‘ZIH

—

= — [617d% - 269(L+d1)d2 + 821(L+d1)2]

i2

i

- = [Cigd} - 2(Cyy+ Cy) (L +d)dy + Cop(L +dy)?]

[

[Caedy + Coe(L + dy)]

e |-

SECTION V. SOLUTION OF THE GOVERNING EQUATIONS FOR
THE MOTION OF THE SPACE STATION IN THE PLANE OF ROTATION

The Uncoupled Motion of the Space Station

The governing equations derived in the preceding chapter are seen to
be uncoupled into two types of motion. Equations (29) and (33) represent the
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W, =~

in-plane motion of the station with boundary conditions given by equations (35)
through (38). Equations (30), (31), (32), (34) describe the out-of-plane
motion of the station with associated boundary conditions given by equations
(39) through (42). We may now treat the in-plane motion of the space station
independently from the out-of-plane motion and determine a solution for the
bending motion of the beam in the plane of rotation. .

The Beam Deflection Equation

We assume that 0, the angle of rotation of the space station in the
plane of the orbit, is given by

a(t) = Qt + T(t)

where Q is a constant and 7(t) is a small quantity representing the time
dependent perturbation of §. Then the time derivatives are

6 Q + 7(t)

6 = T(t)

Substituting the above identities into equations (24), (33), (35) through (38)
and neglecting nonlinear terms, we obtain

~ N-- N.- ~ L-- L . e
Cyt + Cow, 3 (0,t) + C3w,; (L, t) + Cy fwdr+m frwdr = 0

0 0 (43)
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.. ~ m2Q? L m L,
mw + Elw, 1111 - mQZW - 024QZW, 11+ M f wdr - — deI‘
T O T O

no

~ . 2 ..
+(Cqy+ mr)T - 1 Co(L +dy) + m’Ld,dy + mdyr | w,q(0,t)
~ 2M
L T
2 . ’
- L | caty - B (L dp + mdyr [ W, (Lt
L T

1 ~ ~
= [Cyy(L+dy) + Cy3dy] Q%w,(0,1)

L
+ —,1;_,[612d2 + Cz3(L+d1)] \QzW,l(L,t) = 0
L (44)
w(0,t) = 0 (45)
w(L,t) = 0 (46)
EIw, 11 (0,t) + Dyt + Dyw, ;(0,t) + Dgw,; (L, t) + D4Q%, (0, 1)
L L.. md L .
+D592w,1(L,t)+D6322fwdr+D7fwdr+TLfrwdr = 0
0 0 L 0 (47)
EIw, ;; (L,t) + Dgr - Dgw,;(0,t) + Dygw,; (L, t) - DsQ%w, (0,t)
L L.. md L .
+ Dlzﬂzw,l(L, t) + D13S22 fwdr + Dyy fwdr - —:2- frwdr = 0
0 0 L 0 (48)
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By solving equation (43) for 7 and substituting into equation (44), we have the
governing equation of the beam deflection in the plane of rotation, given by

262 L
. ~ Q
mw+ EIw, 1111 - mSZZW - 02492W, 11t m f wdr
0

MT
B 2 6 ~ L.- m ~ L o
I .8 + -I:Y-(C7+mr) fwdr - — (Cq + mr) frwdr
| T Cy 0 Cy 0
B 2 C ~ .
- %Q(L+d2) + defz + md,r + %2-(07+mr) w,;(0,1t)
| L 2MTL L Cy
- 2 C. ~ .
- CNd - in—lﬂi(L+d1) + QgZL + %(C7+mr) w,y (L, t)
L ZMTL L Cy
- —1;[812(L+dz) + Caady1Q%, 4 (0, 1)
L
+ —1N-[(~312d2 + Cos(L +d)lQ%w,  (L,t) = 0 (49)
L

With the assumption w(r,t) =n(t)R(r), the governing equation
becomes
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L
~ 272
mmuywmﬂWn-meu)memwn+nﬁ”'fmmw
T ©
Rl c L mC L
- —M@— + — In fR(r)dr - —fmry fR(r)dr - —=Ly er(r)dr
T C| © Cy 0 C; 0
m? .. C m?Ld,d C,C | .-
- —ry er(r)dr- 2 (L +dy) + =2 =221 nR'(0)
g, 0 L oM, L C,
T
~ . e
| R, M| gy - |-z I g gy S51GR
L Cy L 2M, L C,
d Cq | .- 1 ~ ~
o2, 288 1rRe(L) - S [Cpa(L + dy) + Cagdy] Q%R (0)]
L C, L
1 ~ ~
+ < [Cpady + Coa(L + dy)] @*nR'(L) = 0 (50
L

Dividing by n and rearranging terms, we write

.. m2 ~9 L 6 L
Ui mR(r) - M + ':L fR(r)dr - —:lmr fR(r)dr
K T Ci |0 C; 0
c, ¥ mir
-m—f er(r)dr - = er(r)dr
Cy 0 c, ©

mZLd1d2 + Czcl

R' (0)
2M, L Cy
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2 ~o~
[ Czodz _ m Ldi (L+d1) + CNaCZ R'(L)

L oM, L G,
B} ‘fdi + nlcl rR'(0) - mfz + BCs | ryL
L G, L G,
202 L
Q 1~ ~
= - mM R(r)dr + — [Cyp(L +dy) + Cygd,] Q2R'(0)
T © T

1 ~ ~
- = [Cydy + Cp3(L + dy)] QR'(L) - EIRIV(r) + mQ’R(r)
L

+ 62492R”(r) (51)

We now assume 7(t) = noe_lp t and take two time derivatives to obtain
'ﬁ(t) = —pznoelp b —pzn(t). Substituting this value, we remove the time

dependence from the governing equation and write

Em"Y (r) - 52492R"(r) -m(2% + p?)R(r)

E L m L d 6
+ rmp? \ =L fR(r)dr+ — er(r)dr+ =1 4+ =2 | R'(0)
Cy 0 C; 0 L C
S S e
L G
p’C m2p2Ld d pZEZE Q2
+ | FER(L + d) + 2+ 2=t . — 2 (L +dy| R'(0)
L 2M,_ L Cy L
9252@1
— L |
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 52C..d 2 2 2 2N )
N p Z20d; m°p ng (L+dy) + p Sac7 Y S12d2 R'(L)
L 2M, L Cy L
Q2C
+ —;913— (L +dy)
L
— .
202 2 2 a2 L ~ L
m*Q m C
+ + P + b o1 fR(r)dr+ mngz er(r)dr = 0
M M ~ ~
T T C, | 0 C, 0
(52)
To simplify the algebra we make two identities, where
¢ L L
C , = mp* —ler(r)dr + — er(r)dr
wi I~ ~
Cy 0 C, 0
s |2y S s |4y SRy
L G L G
[, 2 2 o |
C_, = PCu (1, ,q, » BRLAG | PO R'(0)
W L 2M, I (o}
2~ 2~
20 (g, gy - 2
L L
s p°Cyody mpEdZ(L+d1) + PCsCq R'(L)
L 2M, & o}
2 25
+ L7Cpdy + ———ZMNC (L +dy)
L L
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B

2092 2 2 20v2 L ~ L
meQ m C C :
M + Mp + pN L fR(r)dr+mp2T7— er(r)dr
T T Cy 0 C, O
(54)
Thus equation (52) may be written
ERY (r) - Coyy@R"(r) -m(2°+p)R(r) + C_,r + C - 0
wi w2
(55)
An exact solution to this differential equation is
R(r) = cysinha;r + cycosha;r + cgsina,r + cycosa,r
wi . Cw2
m(Q®+p® ~ m(a’+p) (56)
~ 9 ~, _l
Co Q +,\/C224 Q' + 4Em(Q%+p% |?
where ay = | — : " 3EI - (57)
~ ~ . —l
-Cy@? +Jc§4 Q' + 4EIm(Q%+pY |2
a; = . (58
2EI . )

are now expressed in terms of the arbitrary

The constants C and C
w W

1 2
constants Cj (j =1 - 4) of the solution by substituting equation (56) into

equations (53) and (54). Carrying out this substitution, we obtain

AC_, - AC , = Ay + Ajcy + Azey + Agey (59)
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and

where

52

_B,C

wi

w]

+ BZsz = Bgcy + Bycy + Bscy + Bgey (60)

‘;—1— EIEQZ + pz 81i - '%‘87142']: - %mLSi - dlal
- dyCy - LCy, - LCj
2 o~

mpL | G, L
(Q°+p9) | m T
mp2 1 v 1 ~ 1

— LCq(cosha;L. - 1) + —mL(LcoshalL - —sinha1L>
L a4y ay ay

+ (diai + Eaz) aq + (dzai + i63) aicoshaiL

2 ~
mp” 1 L C;sinha,L + L m L| Lsinha; L. - L cosha;L + L
E ay aq aq a4

+ (d201 + E83) aysinha L

oo

1

=]
e

sinasL. - Lcosa2L>

~

1 ~ 1 ~
Y Cq(cosayLi - 1) + asz a
+ (d101 + LCz) a, + (dyCy+ i63) ascosa,L

=
G

2 2 as

[l

2

1 1

—LC7s1nazL + ;—mL<—£—cosa2L - — + Ls1na2L>
(d, C1 + LC3) a,sina,L



5

1 G, L, 2 2.2 2N ~
B - b | Hoak w2 g g,
P L oM, L C,
T
o C~12L N Qz(izsL 1;1;[112 (9% + p?)
L L T
N pZCZZL2 mpZCZL3
2C, 3C,
| —
1 mL 2¢2L, 28,12
T C1m 201
2 2 ~ I~
B, a;p“Cyg (L + dy) a;m pfdidz + ap? CNZ 7
L M, L Cy
a QZE (L + dy) a19282£, mZ(Q2 + 92)
- —1——11~ 5) - — -
L T aM,

L 2
L MT L

+ a]pz ~3~1 alﬂz aizdz mLpze-z
51 "I: ay 61

2 2 272
(2 +P)+pcl

2 2
+_a_19_CZ&(L+d1)+ m

L L

aiM

T 3151
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2 2 2
sinha,L |- ELSZDQZ 3_1mp_}dz(L +dy)
2
L MTL
a;p°C4Cy 2192 Cyd; mL9257
C1 L 3181
2y C 2,42, 2 2 N2
+a19~ 2L +dy + ma(§2{+p)+pN7
L 1 T aIC1
2~ 2~
- cosha;L L 4 mchl
alCy alCy
2 2 2N A
329~CZQ (L +d ) + alm P Ld~1d2 + aszCZC7
2 2~ 22
C
3 Ez%_iz(L v dy - iz_ﬂTzﬂL . P S
L L a201

2M, L
T
200 2N 2
L P N3 T, 290°Cyody mLp“Cq
Cy L a,Cy




2 2 2
Bg =| sinayL azp~C2°d2 am p~Ld2 (L + dy)
L
L ZMT
szaaaz a, E,zdz mLp? 51
C, L a,Cy
25 2, 2 2 22
__2—_2.3_Q~C (L+d1) + m(sli[-"p)_*_pg'l
L 2 T a2C1
mp267 ].'I'].p2 67
+ cosa,L = —
a3C, a3 Cy

Solving equations (59) and (60)

simultaneously, we write

C = chi + KZCZ + K3C3 + A4C4
wi
and
= ﬁ + ﬁc + ﬁc + Ec
sz 1C4 2C2 3C3 4C4
K . AzBy + A,B3
where 1 = AB, - A,B;
X - AdBy + ABy
2 7 AB, - AyB;
Z _ A5B2 + A2B5
3 7 AB; - AyB;
K _ A6B2 + AzB(-L
¢ 7 AB; - AB
~ By + BK
B, = =8t iy
i B2

(61)

(62)
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Development of the Characteristic Determinant

By making the substitutions for = Qt + 7(t) and w= noelptR( T)

and substituting T from equation (43) into the boundary condition equations
given by equations (45) through (48), we have, after algebraic simplification

and neglecting nonlinear terms,

R(0) = 0

R(L) = 0

L L
EIR"(0) + D;R'(0) + DR'(L) + D; [R(r)dr - Dy [ rR(r)dr
0 0

L L
EIR"(L) + DsR'(0) + DgR'(L) + D; [R(xr)dr + Dy [rR(r)dr -
0 0

The identities ]31 through 1~)3 are given below as

~

D,C,

51 = D4Qz - p2 D2 - ~
Cy
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i C,
63 = Dst - p2 Dr( - _i_l'Df
» Cy
B - ot [B 2
L &
55 = —Dsﬂz - p2 —D3 - _]23'\70_2_
Cy
~ D ~
Dg = Dp@® - p® | Dy - _&S—a‘
Cy
~ D, C,
D; = Dy;3@° - p* |Dy - —&
Cy ]
Dy = mp’ Ef + %&
T ¢,

The solution for R(r) given in equations (56), (61), (62) is
substituted into equations (63) through (66) to give a set of four simultaneous
homogeneous equations in the unknown pZ, written as

li
(=

a41Cy + a19Cy + a33C3 + A14Cy

I
[«=]

221Cy + A€z + A23C3 '+ Ap4Cy



It
o

a31Cy + agCy + aggCz + aCy

i
[

249Cy + A49Cy + Ay3C3 + aycy

from which we obtain an associated characteristic determinant

2
D(p%) = a;; ayp  ay3  ay
41 az a3 ay
A3 azgy Agy ay

Ay A4y 843 Ay

The elements aij of the determinant are defined as

B

1= LT 1 )
B

aqp = —m(—QT'+‘2_Z'p) + 1
B

3 = @ + Py

m

a —'—fELz‘+1
47 m@® + p?

A, + B
ay = sinha;L + L—12+—4r

LA, + B
aspy = cosha;L + m_(éTéa)h

58




Aoy

az =

il

agzs

LA, + B
cosa,L + —42+—§§-—

m(Q° + p%)

~

Dja; + DjajcoshayL + —]33- (cosha,L - 1) +
1

—

B,L(2D; - D,L)
2m (9% + p?)

~

Dy Lcosha;L -—LsinhaiL +
| 1 a

A((6Dy + 6D, + 3DsL% - 2D,L3
6m(° + p?)

~
. —

Ela} + D,a;sinha;L + —% ginha,L
ay

~

1
- -]—D—‘L<LsinhaiL - —1—cosha1L + = > +
a4 a4 a4

B,L(2D3 - D,L)
2m(Q° + p2)

A,(6Dy + 6D, + 3D3L2 - 2D,LY)
_ 6m(Q° + p?) —

D B,L(2D; - D,L)
2m( Q° + p2)

~ ~ D
Djay + Doagcosayl - —;3- (cosayL - 1) +
2

Dy (1 A3(6Dy + 6D, + 3D,L? - 2D,L3)
- —gqi _ 3 1 2 273 4
a, <a sina,L Lcosa2L> + 6m (22 + pz)

~

— ~ D, .
- Ela3 - Dja,sina,L + —d sina,L ]
a

~

D, (1 1 , B,L(2D; - D,L)
=4 (= = L L 24 3 4
2y <a2 cosayL 2, + Lsina, > + om (97 + pz)

As(6Dy + 6D, + 3D,1L% _ 2D, L)

L 6m(Q° + p2) —
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a4 =

Ay =

60

~

Elalsinha,L + B5a1 + BealcoshaiL + %L(coshalL -1)
1

D 1 B,L(2D; + DyL)
—=8 - —ginh 1 7 8
+ 2y <Lcosha1L » si a1L> + 2m(9? + p?)

A(6D; + 6Dg + 3D,L2 + 2D,LY)
6m(Q° + pz)

~
o

~ D .
Elacosha;L. + Dga;sinha,;L + —j—smhalL
1

D 1 1 B,L(2D; + DyL
+ —(Lsinha;L - — cosha;L + — 2L s )
a1 a4 ay 2m(Q° + p?)

Ay(6Ds + 6 Dg + 3D;L% + 2D4L5)

6m(Q° + pz)

~
w——

~ ~ D
r-EIagsinazL + Dga, + Dgagcosayl - _a—] (cosa,L - 1)
2

B3L(2D; + DgL)
2m(Q° + p?)

+ —Qﬂ—<isina2L - Lcosa2L> +
a; \ 4

, Ay(6D5+ 6D + 3D;L? + 2DgL3)
6m(Q° + pz)

~
pr

~ . D, .
-Elajcosa,L - Dga,sina,L + —j—smazL
2

B4L( 2D7 + DBL)
2m(Q° + p?

+ —]2&<-lcosa2L - 1 + Lsina2L> +
az \ a2 a2

A4(6D5; + 6Dg+ 3D,L? + 2D,L3)

6m(Q° + p?)
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The characteristic determinant has been programmed for solution
on the IBM 7094 digital computer. The values of p? for which D(p% =0
are the natural frequencies of the in-plane motion of the space station, with
associated mode shapes. Numerical results of this analysis for a particular
space station design are presented in Appendix C.

Special Cases for Values of pzs _ Q2

In order to investigate the behavior of the characteristic determinant
when p2 takes on negative values of magnitude exceeding 92, we recognize
five regions where the general solution obtained in the previous article is not
valid. Discussion of these regions follows.

_CL0* - 4EImg”
] 4EIm

this region the governing equation is unchanged from equation (55), but the
solution is written more conveniently as

The Case Where p2 is Between p2 = _0? and p2 = Within

R(r) = cysinha;r + cycosha;r + cgsinhagr + cycoshagr
,,,,,CW1r Cw2
m( Q% + p%) m(S22+pT) (67)
where a; is given by equation (57) and
Cu? - A CLQ* + 4EIm(Q% + p?) |2
4 = 2EI
(68)

The previously discussed development procedure (Development of the Character-

istic Determinant) again leads to a characteristic determinant valid within

the stated region. Numerical results of the analysis of this case are presented

in Appendix C.
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The Case Where p2 = -2, For this case the governing equation becomes

IV ~
EIR" "(r) - C,Q%R" -
(r) 242°R"(r) + Cwir + sz 0 (69)

for which the solution is

Cw1r3 C 21‘2
R(r) = cysinhasr + cycoshayr + cyr + ¢4 + - 4+ -

6Cy, Q22 2C 5,02

(70)
~ .7
2
where a; = [EZAQ—:I
EI (71)

Following the previously discussed development procedure we obtain a charac-
teristic determinant valid for the case p2 = _0%. Numerical results of the
analysis for this case are presented in Appendix C.

The Case Where p2 Takes on Negative Values Larger then

2 _ -622494 - 4EIm$22
p 4EIm
by equation (55), but the solution will now be written as

The governing equation for this region is given

R(r) = cysinhagrsinagr + cysinhagrcosagr + cscoshagrsinagr
+ cycoshasrcosagr + CWir + sz
4 5 6 m(QZ + ph m(Q° + p))
(72)
B e
where a = ——24—6 o’ + ___-m(92+p2)
5 - 4EI 4EI | (73)
] ] ¢
Cyy®’ [/ -m(2? + p?
ag = + —_—
4EI 4EI ] (74)
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The previously discussed development procedure leads to a characteristic
determinant valid within the stated region. Numerical results of the analysis
for this case are presented in Appendix C.

~2 4 2

The Case Where p? =

4EIm
is
EIR™ (r) - Coy@R" (1) + —@49—43@) +C_r+C . = 0
) - Cu ) * TaE wit T Y2 T
(75)
for which the solution is
R(r) = cysinha;r + cycosha;r + cgrsinha;r + cyrcoshagr
4EICW1r 4EICW2
Cg, 0t CAaf (76)
3
h ~
where . B c QZ (77)
v 2EI

Following the development procedure discussed previously, we obtain a

~2
-Coy Q4 - 4E1m92
4EIm '
Numerical results of the analysis for this case are presented in Appendix C.

characteristic determinant valid for the case p? =

The Region Where A;B; - AyB; is Identically Zero. This region gives rise to
a singularity in calculating the value of the characteristic determinant; there-
fore, the simultaneous solution of equations (59) and (60) must be modified.
In order to simplify the discussion of this point of singularity, the physical
constants of the space station design given in Appendix C are used as an
example.

The governing equation for this case
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For the given data A, =0. Therefore, the equation A;B; - A3B; =0
becomes A;B, = 0; and since B # 0, we must have A; = 0. From the definition
on page 52 we solve for the p? for which A; = 0. Thus

2 _ -51592
T on . L ™ -
=72

~ 2~_ —1-_ 3~ ~o ~ ~ ~ "~ NS
C7L L - 3mL L - d1C1 - dZCj, - LCZ - LC3

which falls within the region discussed in the solution of equations (67) and (68).
For this value of p2 equations (59) and (60) become

0 = Agecqy + Agcy + Ageg + Agey (78)
and Bscy + Bycy + Bgcz + Bgey + B10W1
Coz = B, (79)

The identity of equation (79) is used with the solution for R(r) of equation
(67) and substituted into the boundary equations given by equations (63) through
(66) to obtain four simultaneous equations, written as

C
wi
€41C1 + €15Cy + ©€93C3 + €44Cy + €45 ‘m"_z—‘T(Q 1 pY =

C
€91C1 + €99Cy + €93Ca + €94Cy + € L 0
—I—Z_W=
21C1 22C2 23C3 24C4 25 m(Q° + p?)

C
wi
€3Cy + ©€33C3 + €34C4 + €3 ——7 oy —3- = 0

e
31C1 m(Q + p)

+

C
wi
€49Cs + €43C3 + eyCy + €45 —g-—vz—m(ﬂ T o) = 0

+

€41C4
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and a fifth equation is obtained from equation (78), rewritten as

C
wi
€51C1 + €5Cy + €53C3 + €riCy + € —em——a— =
53C3 54C4 5 m(Q oY 0

Thus the characteristic determinant for this case becomes

2
D(PS) = €11 €12 €33 ey e
€91 €22 €23 ©y €25
€31 €32 €33 €33 ey

€41 €42 €43 €44 €45

€51 €52 €53 €54 €55

where the elements eij of the determinant are defined as

_ Bj
m(Q% + pzs)Bz

ey =

B
€ = 4y + 1
m(Q +pS)B2
€3 = = Bs
13 = m(92+p:)B2
_ Bg
1 = m(822+p;)B2 + 1
B
€15 = E;
ey = sinha;L. + B3

m(Q? + p;)Bz



By

D,B,L

m(Q° + p;)Bz

e cosha,;L. + p
22 1 m(Q* + p;) B,
Bs
e sinha,L. +
2 4 m(Q° + p) By
B
e cosha,L + g
# 4 m(Q* + p?) By
B
e L + =%
25 B2
Boars By
es Dja; + DoajcoshaL + 3 (cosha;L - 1) +
1
D 1
_De <Lcosha1L - —sinha1L> -
a4 a4
2. Don.qi Ds .
esy = Elaj + Dyaysinha;L + " sinha;L +
1
D
- =4( LsinhaL - —1coshaiL + —
L. a4 ay
Sae B B,
€33 = Da, + DoaycoshayLi + a (cosha,L - 1) +
4
- Dy <Lcosha4L - —1—sinha4L> -
L ay a4
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D,B,L?

1 > D,B,L*

2m(Q? + p;)'B2

D;B,L
m(Q% + pi) B,

2m($22 + pi)Bz
—

D;BsL
m(Q° + p;)Bg

D,B,L>

2m( Q% + pi)Bz



€34

€35

€44

€42

€43

2 X . Ds . DsB.L
Elaj + Dyassinha L + _af sinha,L + m(5273_+6_§§]§_2

D 1 1 DyB,L’
- =4 i .= 2\ . . Z4le
ay <Lsmha4L 2 cosha,L + a4> om (9% + p2) By

2 3 B,

~ o~ D.L2 D.1.3 ~ D
LD1+D2+D3L DL B (D3_ 24L>

g ~

ElalsinhaL + 55a1 + BsalcoshaiL + l;:—L(coshaiL -1)
1

~ ~ ]

ps) Bz__

B7B3L Eﬁ_ _j__ .
m(Q? + p;)Bz + a, <Lcosha1L oy sinha,; L
__DgBL?
2m(Q° + p°) B
i m(Q" +p ) By N
2 ~ Dy D;B,L
Elajcosha L + Dgassinha;L + —a-:— sinha L + m(927:4p2s) =

DyB, L2
2m(Q° + pz) B,

+ Dy <Lsinha1L - icoshatlL + —1—> +
a4 a4 a4

Elajsinha,L + Dga, + Dga,cosha,L + lz-z— (cosha,L - 1)
4

BBL . Dy
* m(92+pzs)B2 * ay

(Lcosha4L - aisinha4L>
4

. DB, L
2m( Q% + p;) B,

—
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~

~ D D.B,L
= Elalcosha,L + Dqa,sinha,L + —LCsi L 16
ey 4C a4L + Dgaysinha,L + ay sinha,L + m(QZ n p;)Bz
D { 1 DB, L2
=8 inha,I. - — — f—f
+ Py (LSI 4 a4cosha4L+ a4>+ Pm (22 + Ef)Bz
— S -
~ ~ D, L2  D,L3 B,L [~ D, L
ey = LD5+D6+ ; +83 + B, 7+—%—
€51 = Ag
€5 = Ay
€53 = Ag
€5 = Ag
es = 0

The characteristic determinant has been programmed for solution on
the IBM 7094 digital computer. Numerical results of the analysis are presented
in Appendix C.

SECTION VI. DISCUSSION

The results of this analysis of the free vibration of a rotating beam-
connected space station have shown that the motion of the system can be
considered to be divided into motion in the plane of rotation which is uncoupled
from the motion of the system in the plane perpendicular to the plane of
rotation. For motion in the plane of rotation an exact solution for the beam
deflection has been obtained, and a set of nonhomogeneous boundary conditions
representing a fixed-fixed attachment of the beam to the space modules has
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been used to give a characteristic determinant. Computer programs have
been developed to solve for the zeros of the characteristic determinant and to
calculate the natural modes of vibration of the rotating system.

An exact solution for the beam deflection for motion of the system in
the plane perpendicular to the plane of rotation can be obtained using similar
methods, but it was not included in this study because of the length of the
algebraic forms and computer programs.

A particular space station made up of two manned space modules
connected by a flexible beam has been studied to provide an example giving
numerical results of the analysis,

The natural frequencies and mode shapes for the six lowest modes have
been calculated for spin rates varying from 0 to 3.5 rpm. The effect of the spin
rate has been shown to be an increase in the natural frequencies corresponding
to an "apparent' increase in beam stiffness due to rotation.

As discussed in Section V, analyses have been made to investigate
the behavior of the characteristic determinant when p? is less than or equal
to -2, The numerical results for these special cases demonstrate the
existence of two rigid body modes with nonzero frequencies p? = -@2 and

~2 4 2
2 _ -CpQ - 4EImQ

p°= AFIm , respectively. For these frequencies the value of the

characteristic determinant has been shown to approach zero as p2 — -0?% and

~2 4 2 ~2 4 2
70249 - 4EImQ :C24Q - 4EImQ )

2 ;
as p 4EIm 4E1m
# 0. Therefore, for each of these frequencies we have the rigid body mode
R(r) =0 since the arbitrary constants cj (j =1 - 4) of the solution must

, while D(p?*=-Q?% #0and D (p2 =

vanish in order to satisfy the boundary condition equations.

Frequency sweeps have been conducted for negative values of pz, and
no instabilities for the motion of the rotating system in the plane of the orbit
have been found.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Huntsville, Alabama, May 20, 1968
964-18-01-00-62
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APPENDIX A
DERIVATION OF THE BEAM ORIENTATION VECTORS

In order to describe the motion of the point on the beam, we identify

an orthogonal set of unit vectors (ev, PPy’ e ) as shown in Figure 4. We
1P2

define the unit vector ew from the vector equatlon

=
}

x d = d sin;/.g>
P1P2 P1P2 w

—

= -J | zy - z; + dysingsinysing, - dysinfcosycosBycosa,
- dycos@sinB,cosay + dysingsinysing

- dysinfcosycos B cosqy - dicosfsinB cosqy

—

+K | y3 - y1+ dycosOsinysina, - dycosfcosycosBycosay

+ dysinfsinfBycosay + dycosfsinysinay

L- djcosfcosycos B cosay + d;sinfsinB cosa;

where the angle u is shown in Figure A~1. Taking the dot product of the vector
with itself, we obtain the scalar equation

@ . sing)? = (25 - 29) %+ (y2 - y1)? + disin’ysin’a,
P2

+ d%coszzpcos2ﬁgcosza2 + d%Sinz,BzCOSzClz

+ disin’ysine; + dicos?Pcos?B,cosie,

+ disinzﬁ scos’ay
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—
pre—

+ 2(zg - 24) | dosingsinysina, - dysingcosycos fycosay

dycosfsinfycosay + djsingsinygsing

d;sinfcosycos B cosay

d,cosfsinp cosay

- —

+ 2(yy - yy) [_dgcosesinz/)sinaz - dycosfcosycos Bycosay
+ dysingsingycosay + djcosfsingsing;

- dycosfcosycos gicosa;

+ d;sinfsin g cosa,
L _

2d§sinz,bcos Ycos Bysinascosay + 2d1d2sin21psina 1Sinoy

2d,d,sinycosycos Bjcosa Sina,

2d,d,sinycosycos Bysinacosay

+ 2d,d,cos’Pcos B cos Bacosa cosay
+ 2d,dysinBysinB,cosa cosa;y
- 2d!sinycosycos Bysina cosay

K

PP,

T

FIGURE A-1. THE ANGLE ; BETWEEN ”é; o AND T
12



We now identify the angles Ak (k=1, 2, 3) which the vector 3.12

makes with the inertia space axes shown in Figure A-2a. From Figure A-2bwe
see that

and
A2 = @ when y is assumed to be a small angle.

From the sum of the direction cosines we have, neglecting higher order terms,

™
A3=5—9-

K
A

=

FIGURE A-2. ORIENTATION OF ?1’12 IN INERTIA SPACE
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Taking the dot product of El:z with each of the inertia axes, we write

dig
dyp *

—_

dyy o

—

I = dmCOS)\i = X9 -Xy =~ -d12¢

J = djpcosry = yg -y; = dypcosf

—_—

K = djcosrg = zy - zy = dy,sind

Substituting these identities into the equation for (dp p sin,u)z, we have
1P2

74

: . 2 .
(d - sinp)? = di + d2y?sina, + dicos’ay + d{¥Psin’ay + dicos’e,

+ 2dyy [ dyy¥sinay - dycosBycosay + diysina,
- djcos B cosay

- 2d3ycos Bysinaycosay + 2d1dzwzsina1sinoz2

- 2d;dydcosBicosasina, - 2didydcos Besina cosay

+ 2d;dscosa cosaycos(By - Ba) - Zd%z,bcosﬁlsinaicosai



We assume ¢4, O3, 1, Bz are small angles and neglect higher order terms
to obtain

(d sinu)? =~ di +d}+d} - 2d;dy - 2dypdy + 2dydy = (dgp - dy - dy)?

P1P2

Thus dp p sinu = (dyy - dq - dp) = L for small deflection theory. We note
1P

that a similar procedure can be used to show that d_ - d =d® =~12
for small deflection theory. P1P2 PPz PiP2

The equations for e and e may now be written as
w PiP2

- J e .
ew = "L |Z-'* dysinfsinysinay - dzsmecoszpcosﬁzcosaZT
- dycosfsinfycosa,+ dysinfsinysine;
- dysinfcosycos B cosay - djcosfsin B cosay
K . . -1
T | 2oVt dycosfsinysine, - dycosfcosPeos Bcosay
+ djysinfsinfBycosw sy + dicosfsinysinay
- dycosfcosycos B cosay + disingsinB,cosa, |
e I [ x, - x; + docosisi d,sinycos g
= = 9 - 2CO noy + inYcos Bycosa
D1D3 L 1 2 2 2 2
| + djcosysina, + dssinycos §ycosa;
J oo
T R A dscosfsinysina, - dycosfcoscos Bycosay

+ dysingsinfycosas + dicosfsinysing,

L_ d cosfcosycos Bcosay + dy5infdsing cosa,
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—_—

+ I Zg - Zy + dysinfgsinysine, - dysinfcosycosBcosay
- dycosfsinfcosay + disinfsinysing,

- dysinfcosycospcosa; - dicosdsinf cosa;

From the orthogonality of the unit vectors it can be shown by algebraic
manipulation that the third vector of the triad is given by

e = 1
v
) . .
-1z Xy - Xy + dycosysina, + dysinycosfycosa,
+ dycosysina + dysinycospcosa;
Vs - V1 + dpcosgsingsina, - dycosdcosycosBcosay
« | + dysingsinpycosay + dicosfsinysing
- dycosfgcosycospBcosay + dysindsinB cosa;,
K . .
- 17 Xy - X¢ + dycosysinay + dysinycospycosa,

+ dycosysina, 4+ d;sinycospcosa;

zy - 24 +d,singsinysinay - dysinfcosycosBycosay
. | - dycosgsing,cosay + disingsinysina,

- dysinfcosycos B cosay - djcosgsinficosay
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APPENDIX B
DERIVATION OF THE BOUNDARY CONDITIONS

The relationship between the slope of the beam at the end points and
the rotation angles of the respective stages is established for the fixed-fixed
boundary conditions by the following derivation:

The orthogonal set of unit vectors e , e , e has been described
. V. pip2a W
in Appendix A. From Figure B-1 we identify the angles ”v , “r , ”w made
. 1 1 1
by the vector e_, with e , © , € respectively, where
21 V' piPa W
; s e = COoSsp = (-cosysina - sinwcosﬁlcosoq)
2 4 v v {

1 . .
1T | X2 -Ft dycosysina, + dysingcos Bycosay,

+ dycosysina, + dysinydcos B cosa;,

. (y2 - y1) |- cosé@sinysina; + cosfcosycoscosa
- sinfsinp cosay
+ (zy - zy) | - sinfsinysina,; + cosfsinf cosay

+ sinfcosycos Bcosa,

- d2sin22psinozisina2 + dysinycosycos Bysinacosa

- dlsin2¢s1n2a1 + d;sinycosycos B sinacosay
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+ dgsinycosycosBicosaysinay - d,sin®B cos’a,
- djsinBsinB,ycosacosay - d,cos’peos?B cos’ay
- dycos®ycos B cos Bycosa cosay

+ d;sinycosycos B sinw cosay

—_— -_— X - X . .
e. .+ € = cosu_ = (% - %) ( -cosysina, - sinycos B cosa;)
2, P1P2 r L
1 1
+ (_Y_ZL;XQ - cos@sinysina + cosfcosycosBcosay
- sinfsinf cosa;y
(23 -2 [ o pcindai . T
+ L - singsinysinoy + sindcosycos B cosay
+ cosfgsinfcosay i
i . .
+ 7 |- dysingsinay - dy
- dycosa cosacos(By - B 7)
& o« e = cosy = -yl [ singsinysina, + cosfsinfBcosay
21 w Wy L

+ sinfcosycos B cosay
(zy - 29) o
+ T cosgsinysina, - cosfcosycosp cosay
+ sinfsinfcosa;

dy, . . ) . .
+ _I:Z siny (sinB cosa sina; - sinf,sinajcosay)

+ %zcoszpcosaicosazsin(ﬁz - By
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Projection of ‘e, in the
: Plane of ep.p, and ey

ZF’rojeclion of ?21 in the

and ey

£l

Plane of -e.p1p2

—_—

FIGURE B-1. ORIENTATION OF &, WITH THE TRIAD & , 6 , e
1 v P1P2 w

Using small deflection theory and neglecting higher order terms, we write

d d
~ - Bk § _ ~2
cosuVi @y <1 + L> Olz< : >

cosp o~ 1
Ty

d d
. Bl<1+f>+ﬁz<_f>'

R

cosp
w
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Now the angle Hop made by the projection of —e_; on the plane formed by

1 1
e , e is related to v,4(0,t) with the equation
V' P1P2
d d
- =1\ _ g2
cosuVi oy (1 + 1 ) sz( 1 >
ta = = =
n (k. ] osH i v, 1(0,t)
1 r1

d d
o ) - o(2)

and similarly we have for the other end of the beam

d d
- =2 _ Yy
v, ((L,t) = -ay <1+ L> a1<L>
Also the angle Hoor made by the projection of —e; on the plane formed by
1 1
e , e  is related to w,1(0,t) with the equation
PipP2 W
d d
cosuwi B1 <1 + —LL> + B 2<—f>
i, 1= o T 0 T s walon
1 r

SO W,l(o,t) = Bl (1+%_JL> + Bz(_d‘l“z‘>
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and similarly for the other end of the beam
d d
L,t) = -2 —1
w, (L, t) By <1+ L) +BI<L>

From the equations for w,;(0,t) and w,{(L,t) we solve for g4
and By, written as

B1 = '1:[-d2W,1(L,t) + (L +dyw,(0,t)]
T

By = = [(L+d)w(L,b) - dw, (0]
T

and from the equations for v,(0,t) and v, (L,t) we write

ay = _i_[dzv,l(]'_,,t) - (L +dyv,(0,t)]
L

4y = = [-(L+d)v, (L) + dv,(0,D]
L
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APPENDIX C
NUMERICAL RESULTS OF THE ANALYSIS

The Basic Solution

A program has been written in Fortran IV for the IBM 7094 digital
computer to solve for the zeros of the characteristic determinant described
in Section V. This program utilizes an iteration procedure to conduct a
frequency sweep for incremental values of p2. When the value of the
determinant changes sign, the increment is progressively decreased to
converge to the value of p? for which D( p®) =~ 0. This value of p2 is listed
as p; (j=1, 2, ...N), the jth natural frequency of the system, and an

associated eigenvector representing the mode shape of the jth mode is
calculated. A subroutine is then used to calculate the value of Rj(r) for

incremental values of r from 0 to L, and the results are plotted to give the
jth mode shape of the beam.

The data given in Table C-I are used for input data to the computer
program. These data represent two manned space modules launched by
Saturn-type launch vehicles and then connected by a flexible tunnel. The
tunnel is 4 feet in diameter with thin wall construction of a steel wire grid
sealed with a soft polymer membrane. The grid provides bending stiffness
and astronaut protective structure while the membrane serves as a micro-
meteorite shield and as closure for a shirt-sleeve atmosphere.

TABLE C-I. PHYSICAL CONSTANTS OF THE SPACE STATION

Principal Moments of Inertia Associated EI

Component Mass
(slug - ft}) Distance (Ib - ft%)

Stage 1 | M, = 1552.8 slugs | (IA); = 9(10% | (1A), = 1(10% | (1A)3= 9(10% dy =46 ft ——--

Stage 2 | M = 1552. 8 slugs (IB), = 9(10% | (IB), = 1(10% | (I1B)3 = 9(10% d, = 46 ft —-

L=47ft |.184(10%

Beam m=.1242 slug/ft |  --—--- |  ----- | -----
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A spin rate Q varying from 0 to 3.5 rpm has been studied. The
maximum § of 3.5 rpm is such that the gravity level is approximately
0.1 g at the tunnel end (approximately 0.3 g in the crew quarters). For each
spin rate the natural frequencies of the six lowest modes are tabulated in
Table C-II. Mode shapes for these frequencies are shown in Figures C-1 through
C-6. The effect of the spin rate is seen to be a slight increase in the natural
frequencies corresponding to an "apparent' increase in stiffness of the beam
due to rotation (see Hurty and Rubenstein [12]).

In addition, the value of the characteristic determinant has been
shown to approach zero as p? approaches -Q%. Since the basic solution
is not valid for values of p? = -@2 due to changes in the governing equation
or the solution, as discussed in Section V, we consider the special cases in
the following sections.

G0t - EmQ?
4E1m

As shown in Section V, the solution is given by equation (67). The
characteristic determinant for this solution has been programmed, and a
frequency sweep for incremental values of p2 within this region has been
conducted. The results indicate that D(pz) — 0 at both end points and that
there are no values of p2 within this region for which D(pz) = 0. However,
a singularity exists within this region, as discussed in Section V, page 63.
The value of D(p?) becomes large on both sides of this singularity, which
is evaluated in the last half of this Appendix.

p? Between p2=-22 and p?

p2 = -2

As shown in Section V, page 62, the governing equation and solution
are given by equations (69) and (70) when p2 = _Q? The characteristic
determinant for this case has been programmed and the value of D( p2 = .Q?%)
found to be nonzero. However, the numerical results obtained from the basic
solution and the numerical results of the analysis for the special case of p2

~ 2

_Cha" - 4EImg
4EIm

p2 = _q% Therefore, since D(p2 = —92) # 0, we must have R(r) =0 for all r,

between -Q2 and indicate that there is a natural mode at
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TABLE C-II. NATURAL FREQUENCIES OF THE SYSTEM

pf @ =0 @ - .01343 | 02 = .02686 { 0? = .04028 |} =.05372 [ =.06715 | @F =.08058 | Q? = .08401 | QP =.10744 é’ =.12087 | Q¥ =.13430

Mode (rad/sec)?] (rad/sec)? (rz‘ld/sec)2 (rad/sec)? | (rad/sec)? | (rad/sec)? | (rad/sec)? | (rad/sec)? | (rad/sec)? (rad/sec)? | (rad/sec)? | (rad/sec)?

1. o} _361857(10% | .870a33(10% | . 8790001 10" | 887584(10Y) | 896159(10%) | .904732( 10" | .913305(10") | . 521878(10%) | . 930445(10") [ . 939020(10") | . 947590(10")

2. p .143452(10%) | .143631(10% | .143810(10% | .143990(10%) | 144169(10°) | .144348(10%) .144528(10% | . 144707(10% | . 144886(10% |.145085(10% | . 145244(10%

. 3. o} .153237(10% | .153302(10% | .153368(10% | . 153433(10% |.153499(10%) | .153564(10%) | .153630(105) ,153695(10% | . 153760(10% | . 153826(10% | . 153891(10%)

74. pi .115565(107) | .115590(107) [ . 115614(10°) [ .115638(107) |.115662(107) | .115687(10) J115711(10°) | . 115735(107) | . 115759(107) | . 115784(10°) | . 115808(107)
L

5. P} .444411(107) | . 444435(107) ‘i!.444437(10’) . 444539(10Y |.444831(10% | .444544(107) | . 444699(107) | . 444749(10") | .444802(10") |.444853(10") 1.444;906(1073
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which is the rigid body mode with associated frequency p2 = _Q2. Thus we find
that the rigid body frequency is not the usual p? = 0 for a nonrotating body,
but rather a finite number equal to the negative spin rate.

Seat - aEma?

4EIm

As shown in Section V, page 62, the solution for p2 within this region
is given by equation (72). The characteristic determinant for this region has
been programmed, and a frequency sweep for incremental values of p? has

~y 4 2
-C%4Q - 4EImQ
been conducted. The results indicate that D(pz) — 0 as p2 — 4EImA

p? With Negative Values Larger than p2 =

and that there are no values of p2 within this region for which D(pz) = 0.

2 _ '624 ,Q,4 - 4Elm&22
= o

The governing equation and solution for this point are given by equations
(75) and (76). The characteristic determinant for this case has been

-C - 4EIm
programmed and the value of D p2 2482 4EI4 Elm@Q_ found to be nonzero.

However, the numerical results in the second and fourth sections of this Appendix

~2
-Coa’ - 4Em@’

indicate that there is a natural mode at p2 = 4EIm . Therefore, since
~2 4 2
b (pz - -Cz4ﬂ4é1‘:fh@ : ) # 0, we must have R(r) =0 for all r. Thus we have

~2 4 2
-C -
another rigid body mode with associated frequency p’= & 4E$Im9 as in

the third section of this Appendix.

The Singularity Where AyBo - AoBy =0

As shown in Section V, page 63, a singularity exists in the calculation
of the characteristic determinant. A computer program has been written to
study this singularity, and the results indicate that D(p;) # 0. Thus, since

the numerical results of the analysis in the neighborhood of the singularity do
not indicate a natural mode at the singularity, we conclude that p:; is not a
natural frequency of the system.
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